Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 248: 154720, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542862

RESUMO

Neuroendocrine neoplasms (NENs) comprise malignancies involving neuroendocrine cells that often lead to fatal pathological conditions. Despite escalating global incidences, NENs still have poor prognoses. Interestingly, research indicates an intricate association of tumor viruses with NENs. However, there is a dearth of comprehension of the complete scenario of NEN pathophysiology and its precise connections with the tumor viruses. Interestingly, several cutting-edge experiments became helpful for further screening of NET for the presence of polyomavirus, Human papillomavirus (HPV), Kaposi sarcoma-associated herpesvirus (KSHV), Epstein Barr virus (EBV), etc. Current research on the neuroendocrine tumor (NET) pathogenesis provides new information concerning their molecular mechanisms and therapeutic interventions. Of note, scientists observed that metastatic neuroendocrine tumors still have a poor prognosis with a palliative situation. Different oncolytic vector has already demonstrated excellent efficacies in clinical studies. Therefore, oncolytic virotherapy or virus-based immunotherapy could be an emerging and novel therapeutic intervention. In-depth understanding of all such various aspects will aid in managing, developing early detection assays, and establishing targeted therapeutic interventions for NENs concerning tumor viruses. Hence, this review takes a novel approach to discuss the dual role of tumor viruses in association with NENs' pathophysiology as well as its potential therapeutic interventions.


Assuntos
Carcinoma Neuroendócrino , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Tumores Neuroendócrinos , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4 , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/patologia
2.
Life (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295107

RESUMO

Glioblastoma multiforme (GBM) is a malignant primary tumor type of the central nervous system (CNS). This type of brain tumor is rare and is responsible for 12-15% of all brain tumors. The typical survival rate of GBM is only 12 to 14 months. GBM has a poor and unsatisfactory prognosis despite advances in research and therapeutic interventions via neurosurgery, radiation, and chemotherapy. The molecular heterogeneity, aggressive nature, and occurrence of drug-resistant cancer stem cells in GB restricts the therapeutic efficacy. Interestingly, the CNS tumors in children are the second most usual and persistent type of solid tumor. Since numerous research studies has shown the association between obesity and cancer, childhood obesity is one of the potential reasons behind the development of CNS tumors, including GBM. Obesity in children has almost reached epidemic rates in both developed and developing countries, harming children's physical and mental health. Obese children are more likely to face obesity as adults and develop non-communicable diseases such as diabetes and cardiovascular disease as compared to adults with normal weight. However, the actual origin and cause of obesity are difficult to be pointed out, as it is assumed to be a disorder with numerous causes such as environmental factors, lifestyle, and cultural background. In this narrative review article, we discuss the various molecular and genetic drivers of obesity that can be targeted as potential contributing factors to fight the development of GBM in children.

3.
Invest Ophthalmol Vis Sci ; 58(1): 492-501, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125837

RESUMO

Purpose: Trabecular meshwork (TM) cell volume is a determinant of aqueous humor outflow resistance, and thereby IOP. Regulation of TM cell volume depends on chloride ion (Cl-) release through swelling-activated channels (ICl,Swell), whose pore is formed by LRRC8 proteins. Chloride ion release through swelling-activated channels has been reported to be regulated by calcium-activated anoctamins, but this finding is controversial. Particularly uncertain has been the effect of anoctamin Ano6, reported as a Ca2+-activated Cl- (CaCC) or cation channel in other cells. The current study tested whether anoctamin activity modifies volume regulation of primary TM cell cultures and cell lines. Methods: Gene expression was studied with quantitative PCR, supplemented by reverse-transcriptase PCR and Western immunoblots. Currents were measured by ruptured whole-cell patch clamping and volume by electronic cell sizing. Results: Primary TM cell cultures and the TM5 and GTM3 cell lines expressed Ano6 3 to 4 orders of magnitude higher than the other anoctamin CaCCs (Ano1 and Ano2). Ionomycin increased cell Ca2+ and activated macroscopic currents conforming to CaCCs in other cells, but displayed significantly more positive mean reversal potentials (+5 to +12 mV) than those displayed by ICl,Swell (-14 to -21 mV) in the same cells. Nonselective CaCC inhibitors (tannic acid>CaCCinh-A01) and transient Ano6 knockdown strongly inhibited ionomycin-activated currents, ICl,Swell and the regulatory volume response to hyposmotic swelling. Conclusions: Ionomycin activates CaCCs associated with net cation movement in TM cells. These currents, ICl,Swell, and cell volume are regulated by Ano6. The findings suggest a novel clinically-relevant approach for altering cell volume, and thereby outflow resistance, by targeting Ano6.


Assuntos
Humor Aquoso/metabolismo , DNA/genética , Regulação da Expressão Gênica , Proteínas de Transferência de Fosfolipídeos/genética , Malha Trabecular/metabolismo , Anoctaminas , Western Blotting , Cálcio/metabolismo , Tamanho Celular , Células Cultivadas , Canais de Cloreto/metabolismo , Humanos , Técnicas de Patch-Clamp , Proteínas de Transferência de Fosfolipídeos/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Malha Trabecular/citologia
4.
Invest Ophthalmol Vis Sci ; 56(2): 1396-405, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25655795

RESUMO

PURPOSE: Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. METHODS: Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. RESULTS: Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. CONCLUSIONS: Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels.


Assuntos
Temperatura Corporal/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , RNA/genética , Malha Trabecular/metabolismo , Linhagem Celular , Humanos , Pressão Intraocular , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Malha Trabecular/citologia , Malha Trabecular/enzimologia
5.
Purinergic Signal ; 10(3): 465-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24595664

RESUMO

Mast cell degranulation triggers hypersensitivity reactions at the body-environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA's enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA's enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.


Assuntos
Mastócitos/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Linhagem Celular , Humanos , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Antagonistas de Receptores Purinérgicos P1/farmacologia , Quinazolinas/farmacologia , Triazóis/farmacologia
6.
Exp Eye Res ; 96(1): 4-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22300616

RESUMO

Lowering intraocular pressure (IOP) is currently the only strategy documented to slow the onset and progression of glaucomatous blindness. Ouabain, a cardiotonic glycoside inhibitor of Na(+), K(+)-activated ATPase, was recently reported to enhance outflow facility in porcine anterior segments at concentrations as low as 30 nM for ≥4 h, suggesting a novel approach to lowering IOP. The underlying mechanism is unknown, but associated cytoskeletal changes were observed in porcine trabecular meshwork cells. We have previously found that changes in ATP release and subsequent ectoenzymatic conversion to adenosine may play a role in linking cytoskeletal remodeling with modulation of outflow resistance. We now tested whether altered ATP release might also be a mediator of ouabain's effect on outflow facility. ATP release from transformed human TM5 and explant-derived human trabecular meshwork cells was measured by the luciferin-luciferase reaction. Matrix metalloproteinases (MMPs) were studied by zymography, cell Na(+) concentration by SBFI fluorometry, gene expression of ATP-release pathways by real-time PCR, cell volume by electronic cell sorting and cell viability by the LDH and MTT methods. Actin was examined by confocal microscopy of phalloidin-stained cells. Contrary to expectation, ouabain at concentrations ≥10 nM inhibited swelling-triggered ATP release from TM5 cells after ≥4 h of exposure. Inhibition was enhanced by increasing ouabain concentration and exposure time. Similar effects were produced by the reversible cardiac aglycone strophanthidin. Ouabain also inhibited swelling-activated ATP release from explant-derived native human TM cells. Ouabain (4 h, 30 nM and 100 nM) did not alter gene expression of the ATP-release pathways, and cell viability was unchanged by exposure to ouabain (30 nM-1 µM). Preincubation with 30 nM ouabain for 4 h did not detectably change Na(+) level, the regulatory volume decrease (RVD) or the actin cytoskeleton of TM5 cells, but did inhibit hypotonicity-elicited ATP release. Moreover, even when N-methyl-d-glucosamine replaced Na(+) in the extracellular fluid, ouabain still inhibited swelling-initiated ATP release at 100 nM. In the absence of ouabain, extracellular ATP stimulated MMP secretion, which was largely blocked by inhibiting conversion of ATP to adenosine, as expected. In contrast, ouabain reduced ATP release, but did not alter secretion of MMP-2 and MMP-9 from cells pretreated for ≤4 h. The results suggest that: (1) ouabain can trigger enhancement of outflow facility independent of its transport and actin-restructuring effects exerted at higher concentration and longer duration; (2) ouabain exerts parallel independent effects on ATP release and outflow facility; and (3) these effects likely reflect ouabain-induced changes in the scaffolding and/or signaling functions of Na(+), K(+)-activated ATPase.


Assuntos
Humor Aquoso/metabolismo , Cardiotônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ouabaína/farmacologia , Malha Trabecular/efeitos dos fármacos , Actinas/metabolismo , Linhagem Celular Transformada , Tamanho Celular , Sobrevivência Celular , Expressão Gênica , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microscopia Confocal , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Malha Trabecular/enzimologia
7.
Cell Physiol Biochem ; 28(6): 1135-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179002

RESUMO

The only effective intervention to slow onset and progression of glaucomatous blindness is to lower intraocular pressure (IOP). Among other modulators, adenosine receptors (ARs) exert complex regulation of IOP. Agonists of A(3)ARs in the ciliary epithelium activate Cl(-) channels, favoring increased formation of aqueous humor and elevated IOP. In contrast, stimulating A(1)ARs in the trabecular outflow pathway enhances release of matrix metalloproteinases (MMPs) from trabecular meshwork (TM) cells, reducing resistance to outflow of aqueous humor to lower IOP. These opposing actions are thought to be initiated by cellular release of ATP and its ectoenzymatic conversion to adenosine. This view is now supported by our identification of six ectoATPases in trabecular meshwork (TM) cells and by our observation that external ATP enhances TM-cell secretion of MMPs through ectoenzymatic formation of adenosine. ATP release is enhanced by cell swelling and stretch. Also, enhanced ATP release and downstream MMP secretion is one mediator of the action of actin depolymerization to reduce outflow resistance. Inflow and outflow cells share pannexin-1 and connexin hemichannel pathways for ATP release. However, vesicular release and P2X(7) release pathways were functionally limited to inflow and outflow cells, respectively, suggesting that blocking exocytosis might selectively inhibit inflow, lowering IOP.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Humor Aquoso/fisiologia , Humanos , Pressão Intraocular/fisiologia , Metaloproteinases da Matriz/metabolismo , Receptores Purinérgicos P1/fisiologia , Malha Trabecular/metabolismo , Malha Trabecular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA